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Abstract

This study presents a novel approach for the analysis of the experimental dynamical behaviour of a system exhibiting Vapotron effect.
This phenomenon occurs as a subcooled boiling of a refrigerant fluid entrapped in the cavities of a non-isothermally heated finned sur-
face. A preliminary characterisation of the experimental time series has been carried out to detect the existence of a low dimensional
source of the dynamics, through the adoption of non-linear time series analysis techniques. In this way the existence of chaos has been
observed in the system in study, which is therefore non-linear.

As a second step, a low-order non-linear model has been developed for the identification of the system dynamics. In particular, the
NARMAX (Non-linear Auto-Regressive Moving Average with eXogenous inputs) identification strategy has been chosen for its flexi-
bility, and has been implemented and generalised by means of Multilayer Perceptron neural networks. The neural model has been tested
with satisfactory performances, showing the suitability of non-linear identification strategies as a reliable predictive tools for the dynam-
ics of such kind of systems.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction and phenomenology

The advance of several technological components, espe-
cially in the energetic and electronic [1,2] sectors, is sub-
jected to the fulfilment of stringent requirements of
compactness and growing heat power. Both these require-
ments strongly increase the heat density of modern compo-
nents and impose the enhancement of appropriate heat
removal technologies. Devices designed in order to pro-
mote boiling heat transfer have a great potential in this
kind of applications, due to the high heat density that
can be removed in presence of boiling phenomena. As well
known, in order to avoid the burnout of the device, the
maximum removable heat density usually coincides with
the critical heat flux (CHF), or departure from nucleate
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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boiling (DNB), which is etymologically the upper limit of
the nucleate boiling regime. In other words, when the crit-
ical heat flux is exceeded, a sharp reduction of the local
heat transfer coefficient causes a sudden rise in surface tem-
perature, up to the above-mentioned burnout phenome-
non. For practical applications in cooling systems,
subcooled flow boiling of water is considered to be advan-
tageous for the enhancement of heat removal. Several cor-
relations and models for the evaluation of the CHF of
subcooled flow boiling in water have been evaluated and
compared in [3]. Some other examples of CHF correlations
are treated in Refs. [4–6]. Convective boiling in subcooled
water flowing through a heated channel is essential in many
engineering applications, such as in the divertor plates of
fusion reactors where peaches of about 20 MW/m2 have
to be removed [7]. The effects of surface orientation and
gap size on the pool boiling heat transfer and critical hest
flux (CHF) have been studied in Ref. [8]. However, the pro-
cesses of nucleate boiling and, in particular, the boiling
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Nomenclature

dA fractal or system dimension
dE global embedding dimension
dL local embedding dimension
d-Lyap Lyapunov dimension, Eq. (1)
h Lyapunov exponent
k last exponent, Eq. (1)
n order of the non-linear system, Eq. (4)
N number of data on which /ee(t) is calculated
P heating power, W
Q mass flow rate, kg s�1

t time, s
u(j) input at the generic time sample, Eq. (2)

x(t) time series measured on the system
y(k) system outputs at a given instant k, Eq. (2)

Greek symbols

d(t) distance between two trajectories at time t

e(t) normalised error
/ee(t) autocorrelation function of the normalised error
s time delay

Subscripts
0 referred to the initial time
i ith element
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crisis phenomenon, are quite complicated and a great num-
ber of uncertainties still remain.

The Vapotron effect [9–11] is a particular boiling pro-
cess, firstly observed and named by Beutheret [9], that
may occur as a consequence of the thermal interaction
between a non-isothermal finned surface and a fluid locally
subjected to a change of phase. This effect greatly enhances
the heat exchange per unit area of the finned surface as the
presence of fins, not only increases the heat exchange effi-
ciency, but also contributes to stabilise the boiling process.
In fact, a thermal gradient is formed along the fins so that
the temperature at the fin base may exceed the boiling cri-
ses without endangering the system (unless Leidenfrost�s
temperature is exceeded). The technique initially adopted
allowed for heat removal rates up to 1.5 MW/m2; further
developments (Supervapotron effect) were shown to be able
to ensure values of 3 MW/m2 (due to the stabilisation of
the transition area). These values were then further
exceeded by the Hypervapotron effect, able to remove up
to 30 MW/m2 [10], which was obtained through a closer
disposition of the fins and in conditions of forced main sub-
cooled flow.

The Vapotron effect and its ‘‘descendants’’ Supervapo-
tron and Hypervapotron are characterised by the same cyc-
lic repetition, for each cavity, of the three steps reported in
Fig. 1 and described as follows:

(1) the coolant entrapped inside the cavities is heated
until the saturation temperature is locally reached
and vapour starts to form; at the same time the main
flow outside the cavities is at a mainly constant sub-
cooled state;

(2) the bubble grows until it fills the cavity and is expelled
in the main flow in a very short transient;

(3) once in the main subcooled flow, the bubble collapses
as a consequence of vapour condensation; at the
same time subcooled fluid fills the cavity again.

The cyclic nature of the phenomenon, with rapid and
transient phase changes, makes the study of the system
dynamics fundamental also for the basic comprehension
of involved thermodynamical aspects.

In this contest, for a deeper knowledge of the phenom-
enon, a wide series of operating conditions has been
detected during an experimental campaign. In a prelimin-
ary study [12] it has been observed that the experimental
time series are not periodic. Therefore, this paper aims at
verifying whether the system is chaotic or not through
the application of non-linear techniques to the analysis of
experimental time series. The application of these tech-
niques has allowed to show the chaotic nature of the Vapo-
tron dynamics, similarly to what has been done in [13].

As a second step, the application of a non-linear identi-
fication strategy has been proposed in this study in order to
define a non-linear predictive model of the system dynam-
ics. The proposed approach is based on the application of
Multilayer Perceptron neural networks for the generalisa-
tion of a NARMAX model, analogously to what has been
done in [14,15] for the prediction of other complex thermal-
fluidynamic systems.

2. Description of the experimental apparatus

A schematic representation of the experimental system is
shown in Fig. 2. The main components of the experimental
set up are:

• a polycarbonate test Section 1, allowing visual
inspection;

• an electrically heated finned aluminium plate (2), having
32 fins 7 mm high, 3 mm thick and spaced 2 mm one
from another;

• a hydraulic circuit with a circulation pump (5), a water
tank (4), valves (6) regulating the coolant mass flow rate,
a flow meter (3) measuring the flow rate and a heat
exchanger for the cooling of the refrigerant fluid (7);

• a number of thermocouples and other auxiliary devices,
among which a variac transformer controlling the heat
power supply;

• an acquisition data system.
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Fig. 1. Typical succession of events that a bubble experiences during the Vapotron phenomenon.
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Fig. 2. Schematic of the experimental apparatus.
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In the experimental campaign temperatures were mea-
sured through calibrated thermocouples (Type K chro-
mel–alumel) with the error limits reported in Table 1,
defined according to standard limits of error as published
in IEC 584.

Radiation between the fins and the thermocouples has
been neglected. The diameter of the tip of the thermocou-
ples was 1 mm, in order to minimise the disturbances
induced by the thermocouple on the dynamics of the
phenomenon.

It is worth noting that the temperature measured in the
lowest cavity is the only one not affected by the distur-
bances caused by vapour bubbles coming from the cavity
placed below, whereas for the one placed at the middle of
the heating surface several bubbles, coming from previous
cavities, will affect the measure.
Table 1
K-type thermocouples error limits

Type of wire Temperature
range

Error
limits

Type K
chromel–alumel

�40 �C to 1000 �C ±0.004 · t,
t = measured value
A set of experimental tests has been performed on this
apparatus for various cooling mass flow rate and heating
rate of the plate. These are the only input variables that
have been allowed to vary during the experimental cam-
paign; they are, in fact, the main variables characterising
the system behaviour and influencing the dynamics of the
Vapotron effect. Table 2 reports the operating conditions
that have been tested during the experimental campaign
for the various values considered (the heating power, P,
and coolant mass flow rate, Q) in this study. Blank spaces
correspond to the operating conditions for which the
Vapotron effect has not been observed, i.e. for which the
heat removal has been ensured by means of simple convec-
tion without the occurrence of phase changes.
Table 2
Experimental operating conditions

Mass flow rate
Q (kg/s)

Heating power supplied to the finned plate,
P (W)

1200 1300 1400 1500 1600

0.026 X X X X X
0.05 X X X
0.096 X X



C. Biserni et al. / International Journal of Heat and Mass Transfer 49 (2006) 1264–1273 1267
The time series of the temperature of the fluid inside the
cavity and of the heated plate have been measured at differ-
ent positions for each experimental test. In this study, the
attention has been focused on the dynamical behaviour
of the fluid temperature measured inside the lowest cavity,
i.e. the first encountered by the flow, and inside one of the
cavities at the centre of the heated plate, which have been
addressed in the following respectively as T1 and T2.

Sampling at 36 kHz has been performed, though only
the mean value of 900 data has been recorded. In this
way it has been possible to remove high frequency noise
components and to obtain an actual sampling rate of
40 Hz. This sampling rate had been demonstrated to be
sufficient for a satisfactory representation of the system
dynamics during preliminary tests. The length of each test
has been set sufficiently wide to allow for the observation of
the long-term regime behaviour of the system.

3. Non-linear analysis in the phase space: fundamentals

Recent efforts have been devoted to the exploitation of
chaos, and hence of determinism, in boiling heat transfer
phenomena of various kinds [16,17]. This is a step of pri-
mary importance in order to achieve a deeper knowledge
of boiling dynamics and to choose appropriate modelling
techniques. In fact, the study of chaotic systems requires
the adoption of ad hoc analysis and modelling techniques.

It is worth reporting two main characteristics of a cha-
otic system [18–20]:

(a) after a relatively short time interval, very similar ini-
tial states produce very different dynamical states;

(b) if the temporal window of observation of a chaotic
phenomenon is wide enough, recurrence can be man-
ifested through the observation of a long term regular
structure of the dynamics.

The first property explains the long-term unpredictabil-
ity that characterises chaotic system and is usually
addressed to as strong dependence on initial conditions

[21]. The second property ensures that in the long term it
is possible to observe recurrent behaviours. This implies
that the behaviour observable in small time windows may
be approximately repeated if the observation period is wide
enough, even though such repetitions are not identical and
occur in an irregular fashion. Recurrence is at the basis of
the so-called short-term predictability [21], which allows for
a fundamental distinction between chaotic behaviours and
absolutely unpredictable stochastic behaviours. Moreover,
it explains the typical non-periodic evolution of chaotic
system and the consequent broadband power spectrum,
often erroneously associated to noise or to the stochastic
nature of the phenomenon [18].

This implies that FFT analysis is inadequate and differ-
ent kind of representations are necessary to study chaotic
behaviours, such as the representation in phase space or
state space [18], spanned by an independent set of system
variables. In this representation space, each point corre-
sponds to a system state, whereas a trajectory is a series
of system states and can be used to describe the dynamical
evolution of the system. In the long term, the trajectory of
the system generates in phase space a structure called
attractor [19]. The geometrical properties of the attractor
are fundamental to characterise the possible regimes of
deterministic (i.e. not stochastic) systems. From a mathe-
matical point of view, the phase space is a multidimen-
sional orthogonal space that ensures that dynamically
different pieces of trajectory (corresponding to different ser-
ies of dynamical states) do not intersect with each other, in
accordance with the Theorem of Existence and Uniqueness

[21] that holds for deterministic systems. If noise does not
affect the system, the occurrence of such intersections
implies that different dynamical states are erroneously rep-
resented by the same point of the phase space [18], i.e. the
dimension of the phase space must be increased.

The global embedding dimension, dE, corresponds to
the minimum number of state variables necessary to obtain
an unfolded representation (i.e. without undue intersec-
tions) of the attractor considered as a whole and is gener-
ally a priori unknown. Analogously, on a local basis it is
possible to define the local embedding dimension, dL, i.e.
the number of independent variables that are necessary,
in the mean, to obtain an unfolded representation of smal-
ler regions of the attractor (and hence dE P dL).

An analytical way to choose the correct dimension of
the representation space is an application of Takens�
method of delays [22], namely the phase space reconstruc-
tion. In particular, Takens� theorem demonstrates that if
x(t) is any time series measured on the system, it is possible
to define an orthogonal space by choosing a set of (inde-
pendent) time-delayed copies, x(t),x(t + s1),x(t + s2), . . . ,
x(t + sn).

The correct number of state variables can be chosen
through the evaluation of the rate of unfolding of the
attractor. In fact, dynamically different pieces of trajectory
are represented close to each other or lead to false intersec-
tions (false neighbours) [18] when the dimension of phase
space is insufficient. With the growth of the phase space
dimension, the number of false neighbours is progressively
reduced until it becomes stable or grows again, when the
optimal phase space dimension has been reached (corre-
sponding to either dE or dL, depending on the window
of observation of the analysis).

It is worth noting that the attractor unfolding depends
also on the choice of the delays si [18]. In fact, if the si
are too small, irrelevant differences exist between the time
series and its delayed copies (i.e. the bases are not indepen-
dent), whereas, if the si are too high, the correlation
between delayed copies is lost, together with the global
structure of the attractor. The si may be analytically chosen
through the evaluation of the average mutual information
[18]. Nonetheless, it is often possible to empirically perform
this choice by checking the rate of unfolding of the attrac-
tor graphically represented in two or three dimensions.
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Finally, the study of determinism of a dynamical system
can be performed by evaluating the so-called invariant

characteristics of the phase space representation of the sys-
tem dynamics [18], i.e. properties of the system not depend-
ing on the chosen phase space. In particular, invariant
characteristics allow for the classification of the system
dynamics and can be calculated directly from experimental
data through the creation of a phase space reconstructed
from the experimental time series. The invariant character-
istics considered in the present study are fractal dimension

and Lyapunov exponents [18–21].

3.1. Fractal dimension

One of the most interesting invariant properties of a
chaotic system describes the geometrical distribution of
the attractor, typically characterised by fractal structure
[21]. The main features characterising fractal structures
are self-similarity and lack of smoothness. The former cor-
responds to the existence of inherent scale invariance,
which means that after repeated amplification, fractal
structures usually maintain the same geometrical appear-
ance. The latter refers to the jagged or disconnected distri-
butions shown by groups of trajectories, i.e. in a chaotic
attractor there are often spatially separated layers of
trajectories.

Both these properties are measured by the so-called frac-

tal or system dimension, dA, which is fractional and greater
than two for chaotic systems [18–21]. There is not a unique
analytical definition of fractal dimension. The most com-
mon definitions are those of capacity dimension, informa-

tion dimension and correlation dimension [21], but their
evaluation is computationally intense and sensitive to noise
in the experimental time series. An indirect approach for an
estimation of dA is based on the Embedding Theorem,
which in fact requires that dE P 2dA + 1. If the aim of
the estimation of dA is limited to detect the existence of
a possible chaotic behaviour (dA > 2), it can be sufficient
to verify that dE is greater than five. Moreover, if dE > dL
a correspondence exists between dA and dL, i.e. dL is an
integer greater than dA.

Finally, a convenient direct analytical approach to
determine the fractal dimension consists in its evaluation
on the basis of Lyapunov exponents.

3.2. Lyapunov exponents and Lyapunov dimension

The concept of global or local embedding dimension is
connected to the existence of a corresponding number of
directions along which the system dynamics evolves in
phase space. Chaos theory associates to these directions a
measure of the exponential tendency of two trajectories
close to each other to converge or diverge. Considering
for simplicity a one-dimensional system, i.e. evolving in
one direction, if d0 is the distance between two trajectories
at time t0, the distance d(t) at time t will be d(t) = d0e

ht. The
exponent h is called Lyapunov exponent and strongly char-
acterises the dynamic behaviour of the system [20]. The
sign of this exponent is of primary importance, as it
describes if the trajectories diverge (h > 0), converge
(h < 0) or maintain the same distance (h = 0). For a generic
system locally embedded in a dL-dimensional space, the
knowledge of the dL Lyapunov exponents can be used to
give a direct proof of the existence of chaos [20,21]. From
a physical point of view, positive and negative Lyapunov
exponents correspond to the existence of directions along
which expansion and contraction of the attractor occurs,
respectively. A chaotic system must have at least one posi-
tive Lyapunov exponent, i.e. one direction in which expan-
sion occurs. Moreover, as a net contraction effect is
required to ensure the global stability of the system, the
sum of all Lyapunov exponents must be negative. On the
basis of Lyapunov exponents it is possible to calculate
the fractal dimension dA; the corresponding fractal dimen-
sion is called Lyapunov dimension, d-Lyap, and is defined
by the following expression, according to Ref. [17]:

d-Lyap ¼ k �
Pk

i¼1hi
hkþ1

ð1Þ

In Eq. (1), hi denotes the ith Lyapunov exponent (ordered
for decreasing value, from positive to negative) and k labels
the last exponents for which h1 + h2 + � � � + hk P 0.

4. Analysis in phase space: results and discussion

This section describes the results of the phase space
analysis performed on the experimental time series detected
on the experimental system described in Section 2.

Fig. 3 shows the projections in a two-dimensional repre-
sentation space of the attractors of time series detected by
thermocouples T1 and T2 during two experimental tests
characterised by the same coolant mass flow rate
(0.026 kg/s) and by heat supply P = 1200 W and P =
1400 W respectively. These plots are in the overall well rep-
resentative of the attractors of the experimental time series
detected during the other operating conditions reported in
Table 2. It is worth noting that, though complex, the
attractors do have a well-defined structure, which hints at
the existence of a deterministic source of the dynamics
and excludes stochastic behaviours. In addition, the attrac-
tor shape strongly varies with the operating condition;
moreover also the point of measurement plays a fundamen-
tal role on the morphology of the attractor. It is worth not-
ing that the attractor of time series T2 is noisier than that
of time series T1. This can be explained considering that T2
is measured in the cavity placed at the middle of the heating
plate, whereas T1 is measured in the first cavity encoun-
tered by the flow and therefore is not affected by the dis-
turbing effect of the bubbles released from lower cavities.
Moreover, the attractor of T2 always occupies a wider
region of phase space with respect to that of T1 and
appears morphologically more complex, as a consequence
of the faster dynamics of time series T2 with respect to
T1, better described in [12]. Finally, it is important to
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Fig. 3. Attractors of experimental time series T1 (on the left) and T2 (on the right) for the operating conditions characterised by Q = 0.026 kg/s and
P = 1200 W (first row) and P = 1400 W (second row).
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observe that the attractors present a fractal distribution,
only in part depleted by the presence of measurement noise
in the time series, which represents a strong indication of
the existence of chaos in the system dynamics.

4.1. Embedding dimensions and Lyapunov dimension

Table 3 reports the values of global and local embedding
dimensions, dE and dL, and of Lyapunov dimension d-
Lyap, calculated for coolant mass flow rate Q = 0.026 kg/s
and growing heat power supplied to the heating plate
(first three rows of Table 3) and for heat power supplied
to the heating plate P = 1600 W and growing coolant mass
Table 3
Experimental time series T2, various operating conditions: calculated
values of dE, dL and d-Lyap

Experimental test dE dL d-Lyap

Q = 0.026 kg/s, P = 1200 W 8 6 5.57
Q = 0.026 kg/s, P = 1400 W 10 5 4.48
Q = 0.026 kg/s, P = 1600 W 8 6 5.76
Q = 0.050 kg/s, P = 1600 W 9 5 4.21
Q = 0.096 kg/s, P = 1600 W 10 6 5.64
flow rate (last three rows of Table 3). Reported results refer
only to time series T2 because of its faster dynamics, which
has allowed results evaluation on a wider set of complete
oscillations.

Results reported in Table 3 show that the phase space
reconstruction for the experimental time series T2 always
requires a global embedding dimension not less than eight
and local dimension not less than five. Moreover, Lyapunov
dimension is always fractional and greater than two. These
results demonstrate the existence of a chaotic source of the
dynamics for the system under consideration. It is worth
noting that d-Lyap is always a fraction comprised between
dL and dL � 1, which was reasonably expected. On the
other hand, in general it is not verified that dE P 2dA + 1,
which is probably due to the influence of measurements
noise in the experimental time series.

4.2. Lyapunov exponents

The values of the Lyapunov exponents calculated for
time series T2 for the same operating condition discussed
in Table 3 are reported in Table 4.

Reported Lyapunov spectra give another evidence of the
existence of chaos. In particular, for all of the time series:



Table 4
Lyapunov spectra for experimental time series T2 under various operating conditions

Q = 0.026 kg/s,
P = 1200 W

Q = 0.026 kg/s,
P = 1400 W

Q = 0.026 kg/s,
P = 1600 W

Q = 0.050 kg/s,
P = 1600 W

Q = 0.096 kg/s,
P = 1600 W

L1 0.386 0.243 0.357 0.207 0.383
L2 0.253 0.161 0.222 0.088 0.236
L3 0.125 0.006 0.109 �0.004 0.120
L4 �0.002 �0.149 0.000 �0.152 �0.003
L5 �0.250 �0.696 �0.127 �0.630 �0.223
L6 �0.658 �0.686 �0.816
Sum �0.156 �0.425 �0.125 �0.503 �0.303
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(a) there are at least two positive Lyapunov exponents,
i.e. there are two directions along which expansion
of the attractor occurs; hence, the system must be
addressed as hyper-chaotic;

(b) there are at least two negative Lyapunov exponents,
which correspond to two directions along which con-
traction of the attractor occurs;

(c) one of the Lyapunov exponents is close to zero, con-
firming that the system is autonomous [19], i.e. the
system dynamics is governed by an internal source
and is not produced by an external forcing term;

(d) the sum of the whole set of Lyapunov exponents is
negative, i.e. a net contraction effect dominates the
system dynamics and ensures that the system is glob-
ally stable.

5. NARMAX model of the Vapotron effect

Results of previous analyses have underlined the intrin-
sic non-linear nature of the system dynamics. Therefore,
the NARMAX (Non-linear Auto-Regressive Moving
Average with eXogenous inputs) identification strategy
has been chosen in order to define a proper non-linear
model for the prediction of the system dynamics. In fact,
the NARMAX model is a general class of non-linear
input–output models able to provide a reliable description
for a large class of non-linear systems [23]. In particular,
the NARMAX strategy is based on the characterisation
of the system outputs y(k) at a given instant k, by means
of the application of a non-linear map F to the inputs
and outputs observed during previous time steps. Consid-
ering for simplicity a SISO (single input–single output) sys-
tem, this means that y(k) can be expressed as

yðk þ 1Þ ¼ F ½yðkÞ; . . . ; yðk � nyÞ; uðk � 1Þ; . . . ; uðk � nuÞ�
ð2Þ

where u(j) is the input at the generic time sample.
In the present study the NARMAX approach has been

generalised through the implementation with Multilayer

Perceptron neural networks, which allow defining a unique
model valid for different equilibria [24]. In this way the
function F has been approximated by a neural network,
NN, trained to map the output of the system in a wide
range of its operation
yðkÞ � NN½yðk � 1Þ; . . . ; yðk � nyÞ; uðk � 1Þ; . . . ; uðk � nuÞ�
ð3Þ

In particular, a family of neural network has been trained
to reproduce the dynamics of the temperature oscillations
that characterise the Vapotron effect. The structure of this
family of neural networks has been chosen in accordance
with the following basic consideration on the physical
process:

• the mass flow rate of the coolant, Q, and the heat
supplied at the finned surface, P, are the inputs to the
system and completely define each operating condition;

• among the measured system outputs, the application of
the NARMAX model has been limited to the tempera-
ture measured inside the lowest cavity, T1.

Adapting the general formula (3) to the present case, the
input–output relation defining the model can be expressed
as

½T 1ðk þ 1Þ� ¼ NN½T1ðkÞ; T1ðk � 1Þ; . . . ; T 1ðk � nÞ;Q; P �
ð4Þ

where n, represents the order of the non-linear system
(which is a priori unknown).

A preliminary consideration is necessary in order to jus-
tify the approach adopted in this study for the creation of
the training set for the neural model. In fact, the demon-
stration of the chaotic behaviour of the system in study
reported in the previous section authorises to form training
set by selecting a few pieces of experimental time series T1
(three pieces in the present study), for each of the fifteen
operating conditions reported in Table 2. The choice of
these pieces is performed with the aim of achieving a satis-
factory representation of some of the dynamics manifested
by the system during the particular operating condition.
Nonetheless, due the chaotic nature of the system under
consideration, these the selected pieces of the time series
cannot be exhaustive of the infinite set of possible dynamics
of the system.

A main advantage offered by the generalised NARMAX
approach is that, if the creation of the training set is
performed properly, after the training phase the neural
network should be able to satisfactorily predict any of
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the possible dynamics of temperature T1 within the range
of the system operations considered during the training.

The prediction capabilities of the neural model have
been verified during a testing phase. This phase is per-
formed using a new set, namely testing set, which is much
wider than the training set and does not contain the pieces
of time series of the latter. In the present study, for simplic-
ity the testing set has been created considering the whole set
of time series T1 detected during all the operating condi-
tions, but eliminating the pieces used for the creation
of the training set, in order to ensure that the evaluation
of the model performances is performed properly (i.e. on
the prediction of ‘‘unknown’’ dynamics).

The determination of the optimal order of the model
and of the optimal number of hidden neurons has been per-
formed by means of a heuristic approach. In order to
choose the optimal value of n it is possible to evaluate
the properties of the errors that affect the prediction of
the outputs of models of different order, which can be
defined as the differences between experimental and simu-
lated time series. In general, the characteristics of the error
are considered satisfactory when the error behaves as white
noise, i.e. it has zero mean is uncorrelated [20]. In fact, sat-
isfaction of both these requirements implies that the neural
network has captured the deterministic part of the system
dynamics, which are therefore accurately modelled. To this
aim, it is necessary to verify that the autocorrelation func-
tion of the normalised error e(t), namely /ee(t), assumes the
values 1 for t = 0 and 0 elsewhere, i.e. it behaves as an
impulse. This is indeed an ideal condition and, in practice,
it is sufficient to verify that /ee(t) remains in a confidence
band usually fixed at the 95%, which means that /ee(t) must
remain inside the range �1:96=

ffiffiffiffi
N

p
, with N number of data

on which /ee(t) is calculated [25].
Fig. 4 reports the autocorrelation function calculated

during the testing phase for growing model orders, consid-
ering the same piece of time series, detected during operat-
ing condition characterised by coolant mass flow rate
Q = 0.026 kg/s and heat power supply P = 1500 W. The
first plot in Fig. 4 refers to the best neural network model
for n = 1 (obtained with a neural network with 15 hidden
neurons) and its analysis shows that the autocorrelation
function overcomes the prescribed limits. The same hap-
st
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Fig. 4. Autocorrelation of the testing error for models of order n = 1 (first plot
P = 1500 W.
pens for the second plot in Fig. 4, which refers to the best
neural network model for n = 3 (obtained with a neural
network with 10 hidden neurons). Finally the last plot of
Fig. 4 reports the satisfactorily autocorrelation function
obtained with the best neural model for n = 5, correspond-
ing to the neural network with 15 hidden neurons.

The previous analysis has been confirmed during the
testing phase of the whole range of operating conditions.
In particular, for all of the operating conditions, the anal-
ysis of the autocorrelation function of the error for increas-
ing model order (from n = 1 to 6) has pointed out n = 5 as
the optimal value. In fact, as in Fig. 4, the increase of the
order until n = 5 progressively reduced the autocorrelation
of the error, whereas further increases appeared not only to
be ineffective but even to slightly deteriorate the autocorre-
lation properties. The first plot in Fig. 5 shows the compar-
ison of the experimental time series (full line) versus the
simulation of the fifth order NARMAX model (dashed
line) for the operating condition characterised by coolant
mass flow rate Q = 0.026 kg/s and heat power supply
P = 1500 W. The analysis of this plot allows to perceive
the satisfactorily performances of the model in the predic-
tion of the experimental time series. It is remarkable that
the model is able to reproduce all of the different complex
patterns shown by the time series. In particular, it is able to
accurately predict not only the ‘‘slow’’ dynamical patterns
that occurs at high temperature (during the growth of the
vapour bubble inside the cavity), but also the ‘‘fast’’ burst
towards lower temperatures that occur when the vapour
bubble is ejected in the subcooled main flow and subcooled
fluid refills the cavity. The second plot in Fig. 5 reports the
prediction error of the model, corresponding to the same
experimental and simulated time series reported in the
upper plot. Also this diagram evidences that the neural net-
work predictions are satisfactory, producing a maximum
error of about 0.5 �C, which, moreover, corresponds to
the fastest dynamical behaviour observed in the time series,
i.e. the worst condition for prediction. It is worth noting, in
fact, that the maximum error in the second plot of Fig. 5
occurs when the time series in the upper plot experiences
an abrupt decrease of more than 30 �C in less than 60 steps,
i.e. less than 1.5 s. Results obtained during the testing
of the fifth order neural network in the whole range of
ep
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operating conditions detected during the experimental
campaign are perfectly consistent with those reported so
far, for Q = 0.026 kg/s and P = 1500 W. In other words,
the model proposed for short-terms prediction of the com-
plex thermal-fluidynamic behaviours arising in Vapotron
presents satisfactory performances in the whole range of
operation considered in this study.
6. Concluding remarks

An innovative approach has been proposed for the anal-
ysis and modelling of the complex dynamics that arise in
the subcooled boiling heat transfer phenomena that char-
acterises an experimental Vapotron system.

In the first part of the study, the application of non-
linear time series analyses to the experimental dynamics
has lead to the demonstration of the chaotic nature of
the dynamical phenomena. This result has been deduced
through both the observation of a complex but regular
structure of the attractors of the experimental time series
and the analytical evaluation of chaotic invariant cha-
racteristics of the attractors. In particular, calculation of
global and local embedding dimensions, Lyapunov dimen-
sion and Lyapunov spectra have analytically proved the
existence of a chaotic source of the dynamics. This means
that the system is non-linear and deterministic, i.e. it is pos-
sible to define only short-term predictive models. To this
aim, in the second part of this study the experimental time
series have been used in order to define a non-linear input–
output identification model, based on the NARMAX
approach. The strategy has been implemented and general-
ised by means of Multilayer Perceptron neural networks,
trained to predict the experimental time series of the tem-
perature measured in the first cavity of the heated finned
surface in which Vapotron phenomenon takes place.
Reported results show that the model is able to give satis-
factory predictions of the experimental time series and that
the chosen neural network methodology is able to perform
correct predictions in the whole range of operating condi-
tions of interest.
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